3.170 \(\int \cot ^6(c+d x) (a+a \sec (c+d x))^{5/2} \, dx\)

Optimal. Leaf size=176 \[ -\frac{7 a^2 \cot (c+d x) \sqrt{a \sec (c+d x)+a}}{4 d}-\frac{2 a^{5/2} \tan ^{-1}\left (\frac{\sqrt{a} \tan (c+d x)}{\sqrt{a \sec (c+d x)+a}}\right )}{d}+\frac{a^{5/2} \tan ^{-1}\left (\frac{\sqrt{a} \tan (c+d x)}{\sqrt{2} \sqrt{a \sec (c+d x)+a}}\right )}{4 \sqrt{2} d}-\frac{\cot ^5(c+d x) (a \sec (c+d x)+a)^{5/2}}{5 d}+\frac{a \cot ^3(c+d x) (a \sec (c+d x)+a)^{3/2}}{2 d} \]

[Out]

(-2*a^(5/2)*ArcTan[(Sqrt[a]*Tan[c + d*x])/Sqrt[a + a*Sec[c + d*x]]])/d + (a^(5/2)*ArcTan[(Sqrt[a]*Tan[c + d*x]
)/(Sqrt[2]*Sqrt[a + a*Sec[c + d*x]])])/(4*Sqrt[2]*d) - (7*a^2*Cot[c + d*x]*Sqrt[a + a*Sec[c + d*x]])/(4*d) + (
a*Cot[c + d*x]^3*(a + a*Sec[c + d*x])^(3/2))/(2*d) - (Cot[c + d*x]^5*(a + a*Sec[c + d*x])^(5/2))/(5*d)

________________________________________________________________________________________

Rubi [A]  time = 0.183707, antiderivative size = 176, normalized size of antiderivative = 1., number of steps used = 7, number of rules used = 5, integrand size = 23, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.217, Rules used = {3887, 480, 583, 522, 203} \[ -\frac{7 a^2 \cot (c+d x) \sqrt{a \sec (c+d x)+a}}{4 d}-\frac{2 a^{5/2} \tan ^{-1}\left (\frac{\sqrt{a} \tan (c+d x)}{\sqrt{a \sec (c+d x)+a}}\right )}{d}+\frac{a^{5/2} \tan ^{-1}\left (\frac{\sqrt{a} \tan (c+d x)}{\sqrt{2} \sqrt{a \sec (c+d x)+a}}\right )}{4 \sqrt{2} d}-\frac{\cot ^5(c+d x) (a \sec (c+d x)+a)^{5/2}}{5 d}+\frac{a \cot ^3(c+d x) (a \sec (c+d x)+a)^{3/2}}{2 d} \]

Antiderivative was successfully verified.

[In]

Int[Cot[c + d*x]^6*(a + a*Sec[c + d*x])^(5/2),x]

[Out]

(-2*a^(5/2)*ArcTan[(Sqrt[a]*Tan[c + d*x])/Sqrt[a + a*Sec[c + d*x]]])/d + (a^(5/2)*ArcTan[(Sqrt[a]*Tan[c + d*x]
)/(Sqrt[2]*Sqrt[a + a*Sec[c + d*x]])])/(4*Sqrt[2]*d) - (7*a^2*Cot[c + d*x]*Sqrt[a + a*Sec[c + d*x]])/(4*d) + (
a*Cot[c + d*x]^3*(a + a*Sec[c + d*x])^(3/2))/(2*d) - (Cot[c + d*x]^5*(a + a*Sec[c + d*x])^(5/2))/(5*d)

Rule 3887

Int[cot[(c_.) + (d_.)*(x_)]^(m_.)*(csc[(c_.) + (d_.)*(x_)]*(b_.) + (a_))^(n_.), x_Symbol] :> Dist[(-2*a^(m/2 +
 n + 1/2))/d, Subst[Int[(x^m*(2 + a*x^2)^(m/2 + n - 1/2))/(1 + a*x^2), x], x, Cot[c + d*x]/Sqrt[a + b*Csc[c +
d*x]]], x] /; FreeQ[{a, b, c, d}, x] && EqQ[a^2 - b^2, 0] && IntegerQ[m/2] && IntegerQ[n - 1/2]

Rule 480

Int[((e_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] :> Simp[((e*x)^(m
 + 1)*(a + b*x^n)^(p + 1)*(c + d*x^n)^(q + 1))/(a*c*e*(m + 1)), x] - Dist[1/(a*c*e^n*(m + 1)), Int[(e*x)^(m +
n)*(a + b*x^n)^p*(c + d*x^n)^q*Simp[(b*c + a*d)*(m + n + 1) + n*(b*c*p + a*d*q) + b*d*(m + n*(p + q + 2) + 1)*
x^n, x], x], x] /; FreeQ[{a, b, c, d, e, p, q}, x] && NeQ[b*c - a*d, 0] && IGtQ[n, 0] && LtQ[m, -1] && IntBino
mialQ[a, b, c, d, e, m, n, p, q, x]

Rule 583

Int[((g_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_))^(q_.)*((e_) + (f_.)*(x_)^(n_)),
x_Symbol] :> Simp[(e*(g*x)^(m + 1)*(a + b*x^n)^(p + 1)*(c + d*x^n)^(q + 1))/(a*c*g*(m + 1)), x] + Dist[1/(a*c*
g^n*(m + 1)), Int[(g*x)^(m + n)*(a + b*x^n)^p*(c + d*x^n)^q*Simp[a*f*c*(m + 1) - e*(b*c + a*d)*(m + n + 1) - e
*n*(b*c*p + a*d*q) - b*e*d*(m + n*(p + q + 2) + 1)*x^n, x], x], x] /; FreeQ[{a, b, c, d, e, f, g, p, q}, x] &&
 IGtQ[n, 0] && LtQ[m, -1]

Rule 522

Int[((e_) + (f_.)*(x_)^(n_))/(((a_) + (b_.)*(x_)^(n_))*((c_) + (d_.)*(x_)^(n_))), x_Symbol] :> Dist[(b*e - a*f
)/(b*c - a*d), Int[1/(a + b*x^n), x], x] - Dist[(d*e - c*f)/(b*c - a*d), Int[1/(c + d*x^n), x], x] /; FreeQ[{a
, b, c, d, e, f, n}, x]

Rule 203

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTan[(Rt[b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[b, 2]), x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rubi steps

\begin{align*} \int \cot ^6(c+d x) (a+a \sec (c+d x))^{5/2} \, dx &=-\frac{2 \operatorname{Subst}\left (\int \frac{1}{x^6 \left (1+a x^2\right ) \left (2+a x^2\right )} \, dx,x,-\frac{\tan (c+d x)}{\sqrt{a+a \sec (c+d x)}}\right )}{d}\\ &=-\frac{\cot ^5(c+d x) (a+a \sec (c+d x))^{5/2}}{5 d}-\frac{\operatorname{Subst}\left (\int \frac{-15 a-5 a^2 x^2}{x^4 \left (1+a x^2\right ) \left (2+a x^2\right )} \, dx,x,-\frac{\tan (c+d x)}{\sqrt{a+a \sec (c+d x)}}\right )}{5 d}\\ &=\frac{a \cot ^3(c+d x) (a+a \sec (c+d x))^{3/2}}{2 d}-\frac{\cot ^5(c+d x) (a+a \sec (c+d x))^{5/2}}{5 d}+\frac{\operatorname{Subst}\left (\int \frac{-105 a^2-45 a^3 x^2}{x^2 \left (1+a x^2\right ) \left (2+a x^2\right )} \, dx,x,-\frac{\tan (c+d x)}{\sqrt{a+a \sec (c+d x)}}\right )}{30 d}\\ &=-\frac{7 a^2 \cot (c+d x) \sqrt{a+a \sec (c+d x)}}{4 d}+\frac{a \cot ^3(c+d x) (a+a \sec (c+d x))^{3/2}}{2 d}-\frac{\cot ^5(c+d x) (a+a \sec (c+d x))^{5/2}}{5 d}-\frac{\operatorname{Subst}\left (\int \frac{-225 a^3-105 a^4 x^2}{\left (1+a x^2\right ) \left (2+a x^2\right )} \, dx,x,-\frac{\tan (c+d x)}{\sqrt{a+a \sec (c+d x)}}\right )}{60 d}\\ &=-\frac{7 a^2 \cot (c+d x) \sqrt{a+a \sec (c+d x)}}{4 d}+\frac{a \cot ^3(c+d x) (a+a \sec (c+d x))^{3/2}}{2 d}-\frac{\cot ^5(c+d x) (a+a \sec (c+d x))^{5/2}}{5 d}-\frac{a^3 \operatorname{Subst}\left (\int \frac{1}{2+a x^2} \, dx,x,-\frac{\tan (c+d x)}{\sqrt{a+a \sec (c+d x)}}\right )}{4 d}+\frac{\left (2 a^3\right ) \operatorname{Subst}\left (\int \frac{1}{1+a x^2} \, dx,x,-\frac{\tan (c+d x)}{\sqrt{a+a \sec (c+d x)}}\right )}{d}\\ &=-\frac{2 a^{5/2} \tan ^{-1}\left (\frac{\sqrt{a} \tan (c+d x)}{\sqrt{a+a \sec (c+d x)}}\right )}{d}+\frac{a^{5/2} \tan ^{-1}\left (\frac{\sqrt{a} \tan (c+d x)}{\sqrt{2} \sqrt{a+a \sec (c+d x)}}\right )}{4 \sqrt{2} d}-\frac{7 a^2 \cot (c+d x) \sqrt{a+a \sec (c+d x)}}{4 d}+\frac{a \cot ^3(c+d x) (a+a \sec (c+d x))^{3/2}}{2 d}-\frac{\cot ^5(c+d x) (a+a \sec (c+d x))^{5/2}}{5 d}\\ \end{align*}

Mathematica [C]  time = 23.7503, size = 5572, normalized size = 31.66 \[ \text{Result too large to show} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[Cot[c + d*x]^6*(a + a*Sec[c + d*x])^(5/2),x]

[Out]

Result too large to show

________________________________________________________________________________________

Maple [B]  time = 0.285, size = 542, normalized size = 3.1 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cot(d*x+c)^6*(a+a*sec(d*x+c))^(5/2),x)

[Out]

1/40/d*a^2*(a*(cos(d*x+c)+1)/cos(d*x+c))^(1/2)*(cos(d*x+c)+1)^2*(40*2^(1/2)*cos(d*x+c)^2*sin(d*x+c)*(-2*cos(d*
x+c)/(cos(d*x+c)+1))^(1/2)*arctanh(1/2*2^(1/2)*(-2*cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*sin(d*x+c)/cos(d*x+c))-80*
2^(1/2)*cos(d*x+c)*sin(d*x+c)*(-2*cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*arctanh(1/2*2^(1/2)*(-2*cos(d*x+c)/(cos(d*x
+c)+1))^(1/2)*sin(d*x+c)/cos(d*x+c))+5*cos(d*x+c)^2*sin(d*x+c)*(-2*cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*ln(-(-(-2*
cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*sin(d*x+c)+cos(d*x+c)-1)/sin(d*x+c))+40*(-2*cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*
2^(1/2)*arctanh(1/2*2^(1/2)*(-2*cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*sin(d*x+c)/cos(d*x+c))*sin(d*x+c)-10*cos(d*x+
c)*sin(d*x+c)*(-2*cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*ln(-(-(-2*cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*sin(d*x+c)+cos(d
*x+c)-1)/sin(d*x+c))-98*cos(d*x+c)^3+5*sin(d*x+c)*ln(-(-(-2*cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*sin(d*x+c)+cos(d*
x+c)-1)/sin(d*x+c))*(-2*cos(d*x+c)/(cos(d*x+c)+1))^(1/2)+160*cos(d*x+c)^2-70*cos(d*x+c))/sin(d*x+c)^5

________________________________________________________________________________________

Maxima [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(d*x+c)^6*(a+a*sec(d*x+c))^(5/2),x, algorithm="maxima")

[Out]

Timed out

________________________________________________________________________________________

Fricas [A]  time = 2.67018, size = 1708, normalized size = 9.7 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(d*x+c)^6*(a+a*sec(d*x+c))^(5/2),x, algorithm="fricas")

[Out]

[1/80*(5*(sqrt(2)*a^2*cos(d*x + c)^2 - 2*sqrt(2)*a^2*cos(d*x + c) + sqrt(2)*a^2)*sqrt(-a)*log(-(2*sqrt(2)*sqrt
(-a)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*cos(d*x + c)*sin(d*x + c) - 3*a*cos(d*x + c)^2 - 2*a*cos(d*x + c)
 + a)/(cos(d*x + c)^2 + 2*cos(d*x + c) + 1))*sin(d*x + c) + 40*(a^2*cos(d*x + c)^2 - 2*a^2*cos(d*x + c) + a^2)
*sqrt(-a)*log(-(8*a*cos(d*x + c)^3 + 4*(2*cos(d*x + c)^2 - cos(d*x + c))*sqrt(-a)*sqrt((a*cos(d*x + c) + a)/co
s(d*x + c))*sin(d*x + c) - 7*a*cos(d*x + c) + a)/(cos(d*x + c) + 1))*sin(d*x + c) - 4*(49*a^2*cos(d*x + c)^3 -
 80*a^2*cos(d*x + c)^2 + 35*a^2*cos(d*x + c))*sqrt((a*cos(d*x + c) + a)/cos(d*x + c)))/((d*cos(d*x + c)^2 - 2*
d*cos(d*x + c) + d)*sin(d*x + c)), -1/40*(40*(a^2*cos(d*x + c)^2 - 2*a^2*cos(d*x + c) + a^2)*sqrt(a)*arctan(2*
sqrt(a)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*cos(d*x + c)*sin(d*x + c)/(2*a*cos(d*x + c)^2 + a*cos(d*x + c)
 - a))*sin(d*x + c) + 5*(sqrt(2)*a^2*cos(d*x + c)^2 - 2*sqrt(2)*a^2*cos(d*x + c) + sqrt(2)*a^2)*sqrt(a)*arctan
(sqrt(2)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*cos(d*x + c)/(sqrt(a)*sin(d*x + c)))*sin(d*x + c) + 2*(49*a^2
*cos(d*x + c)^3 - 80*a^2*cos(d*x + c)^2 + 35*a^2*cos(d*x + c))*sqrt((a*cos(d*x + c) + a)/cos(d*x + c)))/((d*co
s(d*x + c)^2 - 2*d*cos(d*x + c) + d)*sin(d*x + c))]

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(d*x+c)**6*(a+a*sec(d*x+c))**(5/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [B]  time = 10.6204, size = 657, normalized size = 3.73 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(d*x+c)^6*(a+a*sec(d*x+c))^(5/2),x, algorithm="giac")

[Out]

1/80*(5*sqrt(2)*sqrt(-a)*a^2*log((sqrt(-a)*tan(1/2*d*x + 1/2*c) - sqrt(-a*tan(1/2*d*x + 1/2*c)^2 + a))^2)*sgn(
cos(d*x + c)) + 80*sqrt(-a)*a^2*log(abs((sqrt(-a)*tan(1/2*d*x + 1/2*c) - sqrt(-a*tan(1/2*d*x + 1/2*c)^2 + a))^
2 - a*(2*sqrt(2) + 3)))*sgn(cos(d*x + c)) - 80*sqrt(-a)*a^2*log(abs((sqrt(-a)*tan(1/2*d*x + 1/2*c) - sqrt(-a*t
an(1/2*d*x + 1/2*c)^2 + a))^2 + a*(2*sqrt(2) - 3)))*sgn(cos(d*x + c)) + 4*sqrt(2)*(55*(sqrt(-a)*tan(1/2*d*x +
1/2*c) - sqrt(-a*tan(1/2*d*x + 1/2*c)^2 + a))^8*sqrt(-a)*a^3*sgn(cos(d*x + c)) - 170*(sqrt(-a)*tan(1/2*d*x + 1
/2*c) - sqrt(-a*tan(1/2*d*x + 1/2*c)^2 + a))^6*sqrt(-a)*a^4*sgn(cos(d*x + c)) + 240*(sqrt(-a)*tan(1/2*d*x + 1/
2*c) - sqrt(-a*tan(1/2*d*x + 1/2*c)^2 + a))^4*sqrt(-a)*a^5*sgn(cos(d*x + c)) - 150*(sqrt(-a)*tan(1/2*d*x + 1/2
*c) - sqrt(-a*tan(1/2*d*x + 1/2*c)^2 + a))^2*sqrt(-a)*a^6*sgn(cos(d*x + c)) + 41*sqrt(-a)*a^7*sgn(cos(d*x + c)
))/((sqrt(-a)*tan(1/2*d*x + 1/2*c) - sqrt(-a*tan(1/2*d*x + 1/2*c)^2 + a))^2 - a)^5)/d